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ABSTRACT

Prey-predator interactions have been modelled by numerous workers. Ecologists have continuously modified Lotka-Volterra equations in
order to provide more realistic descriptions of the complexity of these interactions. The response of predator(s) to increasing prey density
can be best described in terms of a functional response, which is an important criterion determining the success or failure of predator(s) to
control fluctuating prey populations. The functional response of a predator is further differentiated into Holling's Type I, I, Ill, IV and V. We
discuss one-prey and one-predator interactions, in which the models are modified by the inclusion of steady-state satiation and growth
factors. We review situations where two prey and one predator interact, and vice versa. We also discuss Holling’s Type IV model relevant
to competition and food chains. There is a need to examine functional responses as these models were mostly developed by pure
mathematicians and their relevance to field conditions remains largely untested. Prey-predator interactions can be affected even by small
factors and ecologists should include these models in their experimental design when attempting to predict realistic interactions.
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Introduction

Prey-predator interactions stimulated theoretical
ecologists to develop equations that described realistic
interactions. Lotka (1925) and Volterra (1926) use differ-
ential equations to describe these interactions. However,
the complexity of prey-predator interactions resulted in
subtle modifications in the proposed equations. Nicolson
and Bailey (1935) introduced the term “area of discovery”
as a variable associated with the attack rate of the preda-
tor, which triggered a chain of alterations in Lotka-Vol-
terra models, especially when prey and predator densi-
ties are varying. The functional response of a predator
describes its rate of prey consumption at different prey
densities (Holling 1959, 1965), which can be classified
into five types (Type I, II, III, IV and V). Equation c(x)
= mx describes the Type I response, in which there is
a linear increase in predation rate with prey density up
to a threshold (Leslie and Gower 1960; Hsu and Huang
1995). Holling (1959) used Michaelis—Menten’s formula
(expressed by c(x) = m / (A + x)) to describe the Type II
functional response in which there is a decelerating in-
crease in predation rate with prey density until satiation is
attained (Aziz-Aloui and Okiye 2003; Huu Du et al. 2007).

Holling’s Type III response exhibits a sigmoidal
increase in predation rate at high prey densities and is
described by the equation c(x) = mx" / (A + x"). The gen-
eral form of this type of functional response was devel-
oped by Kazarinov and van den Driessche (1978). Type
IV response is relatively less studied and describes the
condition where the predator per capita predation rate
decreases at exceptionally high prey densities, which is
expressed by the equation c(x) = mx? / (A + x)(B + x)
(Tanner 1975; Ali et al. 2016a,b). Type V response, also

known as Ivlev’s functional response, is described by the
equation, c(x) = m (1 — e~4¥). Holling’s Type II and III re-
sponses could also be considered as classical Hill func-
tions (Gesztelyi et al. 2012). However, random perturba-
tions in population dynamics can lead to very different
models, which are more realistic simulations (Xianning
and Lansun 2003; Bing et al. 2004). This diversity and
complexity in prey-predator interactions stimulated us
to present here an overview of the mathematical models
that may better predict such interactions.

Various types of prey-predator systems

Prey-predator models depend on the nature and quan-
tity of prey and predators. Numerous factors affect preda-
tors and their prey. We review a few situations where the
predator is expected to behave differently and this change
in behaviour possibly affects its functional response.

1. One Prey — One Predator System

There are many functional response studies of one
prey and one predator (particularly ladybirds, see book:
Hodek et al. 2012). Holling’s (1959, 1965) equations did
not include the effect of satiation. However, if needed, it
might be included in a steady state satiation (SSS) equa-
tion (Jeschke et al. 2002) with a constant satiation rate.
Jeschke et al. (2002) suggest that digestion should not be
incorporated as part of prey handling time (Pervez and
Omkar 2003), as it does not prevent foraging. Instead,
Jeschke et al. (2002) incorporate hunger level and time lost
in unsuccessful attempts to catch prey in their model and
named it as steady-state satiation (SSS) equation. In this
equation, attack rate (a) is the product of encounter rate
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(B) between a foraging predator and prey, the probability
that the consumer detects encountered food (y), the prob-
ability that the consumer attacks detected food (8), and
attack efficiency (§), i.e. the frequency of successful attacks
(i.e. a = Byd%). Handling time (b) is the ratio of attack time
t.; (per food item) and attack efficiency (§), added to eat-

ing time ¢, (per food item), i.e. b=t,,/ § + t,,,. This SSS
equation is:
1+ax(b+c)—+1+ax(2(b+c)+ax(b—c)?
(b+0)—y1+ax2(b +0) +ax(b - )?) wbcx>0
2abcx
) T air b>0e=0
y(x) = abx
e b=0,c>0
1+ acx
ax b=c=0
0 a=0o0rx=0

Jeschke and Hohberg (2008) also propose a satiation
model that accounts for prey depletion and increasing
predator satiation over time.

dy(®)  h(®)ax(t)
dt 1+ h(t)abx(t)

x(t) = x(0) — y(t)

Here, the first equation reveals that prey consumption
rate increases as a function of hunger level (h), attack rate
(a), prey abundance (x) and handling time (b).

Liu and Lin (2010) introduce a cross-diffusion param-
eter in the prey-predator models. They are of the opin-
ion that prey might be able to protect themselves from
attacks by predators and hence a resistance parameter
should also be incorporated in the model. Recent re-
search also focuses on including the dynamic proper-
ties of random perturbations in classical prey-predator
models (Liu et al. 2004; Liu and Tan 2007). Randomly
perturbed predator-prey models, thereby, have been used
by many researchers to describe the efficiency of inte-
grated pest management strategies (Jeschke et al. 2002;
Mailleret and Grognard 2009). For managing pest pop-
ulations specific prey-predator combinations along with
pesticide sprays can also work. These models may further
be modified by manipulating the predator’s stage struc-
ture (Georgescu and Zhang 2010), state-dependent ran-
dom perturbations, age and defence mechanisms of the
pests (Zhang and Georgescu 2010), and patch structure
of the pests (Yang and Tang 2009). Thus, it is possible to
improve the classical models designed for one-prey and
one-predator system.

Incorporation of a Growth Factor in the equation

Both prey and predator grow logistically in the field
and in certain artificial experimental arenas, as the
predator has other food sources besides prey. Thus, the
predator has two growth rates, viz. predation and logis-
tic growth. Rayungsari et al. (2014) introduce a model
that has three equilibrium points, viz. the prey extinction
point (E,), predator extinction point (E,) and survival

point (E,). Here, E, is unstable, while the other two are
locally asymptotically stable under certain conditions.
Sharma and Samanta (2014) describe a similar model
and considered two situations, i.e. normal and hunger. In
this model, fractional derivatives of order a and p (where
0 <a<1;0<p<1)are considered rather than only the
first order time derivatives. In addition, they construct
approximate solutions using the Homotopy Perturbation
Method and Variation Iteration Method. The modified
equations for the above two cases are presented below.

Case 1: For the normal situation, i.e. the functional response is equal to
the attack capacity per predator; (when cN > aP):

A
DEN(E) = pH1 - [@

N(t) — aP(t)}

DPP(t) = p(b — d)P(D)

Case 2: For the hunger situation, the functional response is smaller than
the attack capacity, i.e., if more prey were available, the predator would
increase its catch (when cN < aP):

1—[@] —-c

DEN) = p {%

N (t)]

pfPt)=p

BEN® - PO [d+ Fin (%)”

With initial conditions

N(0) = c;; P(0) = ¢,
and0<a<l;0<p<1

Here, N(¢) and P(t) denote the population densi-
ty of prey and predator respectively, whereas the other
parameters are r (intrinsic growth rate of prey popula-
tion), k (carrying capacity of prey population), a (attack
capacity of predator population), b (birth rate of preda-
tor), ¢ (maximum predation rate), d (natural death rate
of predator population) and T (the typical time of the
response to hunger).

2. Two Prey — One Predator System

It is possible to describe the functional response at
multiple tritrophic levels, i.e. ecosystems with many spe-
cies of prey (Georgescu 2011), predators (Pei et al. 2005)
and food chains (Baek 2008). Krivan and Eisner’s (2006)
two-prey and one-predator model predicts that when prey
resources grow exponentially, the prey handling times de-
crease to almost zero and can result in great differences
in prey consumption. This could lead to the extinction
of weaker prey. In a different two-prey and one-predator
model, the prey handling time depends on comparative
prey density that enables the predator to stabilize the sys-
tem (Green 2004). Here, the prey do not compete and
predation follows the density gradient of prey. Kesh et
al. (2000) propose a two- prey and one-predator species
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model in which the predator dietary functions are ra-
tio-dependent. They predict the conditions that result in
the permanent stability of the system. Pal and Mahapatra
(2014) introduce an imprecise two prey — one predator
model by using interval and fuzzy numbers in the model-
ling of the prey and predator interaction.

In another two-prey and one-predator model, the
intrinsic growth rate of the prey varies periodically in or-
der to incorporate seasonal variations in which the envi-
ronmental conditions follow a predictable pattern (Song
and Xiang 2006). In a similar model using a Lyapunov
function, the prey consumption of a single predator in-
creases linearly with increase in density of two species
of prey (Chaudhuri and Kar 2004). Thus, it is inevitable
that as ecological conditions vary, functional responses
have to change and other variables and constants must be
incorporated in order to predict more realistic outcomes
of prey-predator interactions.

3. One-Prey — Two-Predator System

In one-prey and two-predator systems, the two preda-
tors can differ in strength. Hsu (1981) proposes one such
model and infers that the top predator is more success-
ful if the interference coefficient is small, while the out-
come of predation depends on the initial abundances of
the two predators if the interference coeflicient is large.
However, the criterion for persistence and stability in
such systems was proposed later by Freedman and Walt-
man (1984) and Gopalsamy (1986). The fate of the two
predators attacking a single prey and their co-existence
depends on the ratio between their numerical respons-
es (Mitra et al. 1992). Dubey and Das (2000) propose
a model for two predators foraging for a single species
of prey based on a Gause-type model. In this, the pred-
ators compete with one another when prey are scarce.
Dubey and Upadhyay (2004) propose another model
for one prey and two predator interactions and discuss
the factors resulting in either persistence or extinction.
Alebraheem’s (2012) model indicates that coexistence
of two predators (y and z) depends on the efficiencies of
the predators’ conversion of prey biomass into predator
offspring being similar. However, if they differ the pred-
ator with the lower value becomes extinct. Sunaryo et al.
(2013) propose a similar model in which both the top
and second predator have Type III functional responses.
This model predicts two equilibrium points and a switch
from instability to stability known as Hopf bifurcation.
Garay et al. (2015) suggest that in two-predator systems
there will be a higher incidence of fighting and lower in-
cidence of killing prey. Experimental studies reveal that
in such scenarios the two predators can work in tandem
by complimenting each other. Laboratory experiments
indicate a synergistic effect on prey mortality when two
ladybird-predators (Coleoptera: Coccinellidae) attack
the same population of aphids (Homoptera: Aphididae)
(Omkar and Pervez 2004, 2011). The mortality of pea
aphids (Acyrthosiphon pisum) infesting a crop of alfalfa

(Medicago sativa) increases many-fold when attacked by
three natural enemies, viz. a ladybird beetle Harmonia
axyridis (Pallas), damsel bug Nabis sp. and parasitic wasp
Aphidius ervi (Cardinale et al. 2003).

Holling Type IV Model for Describing Competition /
Food Chains

Andrews (1968) suggests a function known as the
Monod-Haldane function (i.e. p(x) = mx / (a + bx + x?),
which is also known as Holling’s Type IV function with
a non-monotonic equation. It may also be written as:
g(N,P) =aN/ (1 + bN + aN?). This equation was further
simplified by Sokol and Howell (1987) who assume that
b = 0, which nullifies the bN part of the denominator.

Shuwen et al. (2005) investigate two-species predator—
prey systems using Holling’s Type IV response with pred-
ator subject to random perturbations. Funasaki and Kot
(1993) report chaos in a periodically pulsed mass-action
chemostat. Venkatesan et al. (2003) discuss the presence
of a multiple period-doubling bifurcation route to chaos
in periodically pulsed chaotic dynamic systems. Baek et
al. (2009) describe conditions for the stability of a food
chain using Holling type IV functional response and the
Floquet theory of impulsive equations and small pertur-
bations. Upadhyay et al. (2011) studied a model system
subject to environmental driving forces that are unable
to drive the system from a regime of deterministic chaos
towards a stochastically stable situation. Upadhyay and
Raw (2011) study the complex dynamics of a three-spe-
cies food chain using a Holling Type IV functional re-
sponse and report chaotic behaviour in a narrow region
of the bifurcation parameter space for biologically realis-
tic parameter values. Ali et al. (2016b) infer that increas-
ing or decreasing the top predator’s intrinsic growth rate
can change the dynamics of food chains from chaotic
to asymptotically stable. In addition, an increase in the
death rate of the middle predator can stabilize the dy-
namics of this system.

Some predator-prey systems include two predator
species attacking a single species of prey. Of the two
predators, the top predator attacks both the prey and the
second predator when the prey is scarce. Different ap-
proaches simulate the complex interactions of this mul-
ti-predator system with prey density or extra guild prey,
which are complicated, multi-variant and chaotic (Funa-
saki and Kot 1993; Venkatesan et al. 2003; Shuwen et al.
2005). In such circumstances or in food chains, complex
simultaneous functional responses occur. A depletion in
prey density affects the attack rate of the top predator (X)
and second predator (Y). Simultaneously, the density of
Y will also decrease because of X. Zhang and Chen (2005)
present a modified model that may depict the outcome of
these complex interactions.

Cosner and de Angelis (1999) introduce the con-
cept of the effect of spatial grouping on the functional
response of predators. They state that if predators have
a homogenous spatial distribution, then a prey depend-
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ent functional response can be expected. However, when
shoals of predators hunt for prey, the functional response
will be both predator and prey dependent. This results
in the predator density having a significant effect on the
functional response, which is then dependent on preda-
tor density and the encounter rate. Many predators be-
come confused on encountering a swarm of prey, which
negatively affects their predation rate (Jeschke and Tollri-
an 2005). At high prey densities, it may restrict the preda-
tor’s neuronal abilities, which makes them less successful
in attacking prey (Krause and Ruxton 2002). Predator
confusion significantly affects the functional response,
however, this effect is not included in traditional models
(Jeschke and Tollrian 2005). Most of these models only
describe the ecological interaction between predator and
prey. In predator confusion situations, usually the func-
tional response is dome-shaped, indicating a dramatic
dip in the predation rate at high densities. Predator con-
fusion is widespread and occurs in many animal systems.
Interestingly, predator-prey theory, especially functional
response models, do not include it as a factor reducing
predation rate. This is addressed by Jeschke and Tollrian
(2005) in their elaborate model based on the SSS equa-
tion proposed by Jeschke et al. (2002). Olson et al. (2013)
indicate that swarming evolves as an emergent behav-
iour in prey when a simple perceptual constraint, pred-
ator confusion, is imposed on the predator. In addition,
measuring swarm density and dispersion serves as a use-
ful alternative for qualitative assessment of every swarm
(Huepe and Aldana 2011).

Condlusion

It is evident from this overview that functional re-
sponses are highly sensitive to biological and ecological
changes. We describe a couple of models in detail just
to emphasize the importance of variables that are often
neglected by biologists in functional response studies.
A subtle change in ecological conditions directly or indi-
rectly affects the possible outcome of prey-predator inter-
actions. Hence, models that incorporate all the major and
minor factors that may affect them should be developed.
Although there is a plethora of mathematical models,
which include many of the factors that affect function-
al response, they are rarely used or tested by ecologists.
Hence, there is an urgent need to test these models using
both laboratory and field studies.
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